BTrap

                 

 

 

Quotation form

BTrap brochure

 

Real time analyzer of volatile organic compounds (VOCs). BTrap solution associates Chemical Ionization like Proton Transfer Reaction, with a new compact and low cost Fourier Transform Ion Cyclotron Resonance (FT-ICR) mass spectrometer. BTrap is rugged and can be installed on site.

BTrap features: 

  • Monitoring: measurements every second.
  • Screening: broadband detection.
  • Accurate measurement: high mass resolution.
  • Direct quantification.
  • Transportable device.     

 

Functional specifications

 

Ionization

 

Soft Ionization: use of Chemical Ionization (CI) methods such as PTR (Proton Transfer Reaction) ionization. Chemical Ionization provides less fragmentation than Electron Impact, which allows a better identification of the compounds.

The most commun reactions used for VOCs detection are Proton Transfer Reaction from H3O+, charge transfer reaction from  O2+ , NO+.

Negative ions, for example O, can also be used.

 

Detection

 

Mass range 15-300u
Mass resolution10 000
Mass precision0.005 u
Measurement frequency1 Hz

 

Detection limit

 

100 ppb per direct injection.

Improvement up to 2 to 3 orders of magnitude with preconcentration (a few ppb – below ppb).

 

Analytical capacities

 

Well-suited for VOCs detection:    

  • Gaz analysis
  • Headspace analysis (liquids, solids)
  • Liquid analysis by MIMS  

Qualitative and quantitative measurement (calibration or absolute measurements)  

 

Technical specifications

 

Magnet
Structured permanent magnet~1.6-1.7 Tesla
Low leakage field
Vacuum
Turbomolecular pumps70L.s-1
Ultra vacuum10-9 torr
Sampling lines
Continuous flow, thermostated
Preconcentration MIMS or TD Flash in option:
learn more about TDFlash and BTrap coupling by clicking here.
Dimensions
On wheel
Weight < 150 kg
Size (WxDxH)65x72x104 cm
Electrical
Power supply100/240 V AC, 50-60 Hz
Power Consumption< 1 KW
Environmental
Temperature range5°C to 45°C
Operating humidity < 80%

 

BTrap technology

AlyXan innovative technology for Volatil Organic Compounds (VOCs) real time analysis:

The BTrap analyzer technology couples direct high resolution mass spectrometry and selective chemical ionization techniques to provide the most precise analysis of VOCs in real-time.

 

Selective chemical ionizations:

Those soft ionization methods are based on an ion-molecule reaction:

It is highly advantageous as the precursor ions will react only on the desired compounds, not on the matrix.

 

Among them, PTR-MS (Proton Transfer Reaction – Mass Spectrometry) with the precursor ion H3O+ is the reference method. It reacts extremely well and quickly on hundreds of VOCs (aldehydes, alcohols, acids, amines, aromatics and son on) without fragmenting. Besides, it doesn’t react on the air/water matrix (O2, N2, H2O, Ar…).

 

Other kinds of chemical ionizations (charge transfer and negative ions for instance) can also be used when necessary. Besides, the BTrap acquisition software enables alternating sequentially the analysis methods for a more comprehensive VOCs measurement.

 

High resolution Mass Spectrometry:

 

AlyXan is the only company providing minimized FT-ICR (Fourier Transform Ion Cyclotron Resonance) mass spectrometers in the world. Based on a permanent magnet trap, the BTrap analyzer is both transportable and powerful enough to provide traces (ppb) to % levels analysis. Its really high resolution indeed enables isobaric separation and a wide detection of compounds. Mass spectra are then really easy to interpret.

 

The whole analytical process to generate a mass spectrum (reagent ion generation, analyte ionization, analyte detection/quantitation) takes place within the measuring cell (no need of ions guide/transfer) in a few steps:

 

1) Precursor ion production: Water vapor is injected at a few E-6 Torr, during tens of milliseconds, into the measuring cell (vacuum enclosure at E-8/E-9 Torr). An electron beam from the cell filament is used to generate H3O+ ions (PTR-MS), which will be trapped into the measuring cell by the magnetic field of the analyzer.

2) Analyte molecules ionization: Gas sample is injected at a few E-5 torr, during hundreds of milliseconds, into the measuring cell. Then, ion-molecule reaction occurs between the sample and the reagent ions to generate analyte ions, which are also trapped by the magnetic field of the analyzer.

3) Ions detection: Detection of a signal is made by measuring the ions rotation frequency around the magnetic field’s axis. This whole analytical process (from sample injection to signal detection) only lasts a second! Then, all ions are ejected from the measuring cell to start a new measurement.

 

 BTrap technology benefits:   

 

  • Comprehensive detection.
  • Real time analysis.
  • High mass resolution.
  • Instantaneous absolute quantitation (no calibration needed).
  • Easy setup on-site and/or on-line.

 

BTrap analyzer is laboratory grade as well as truly adapted to on-site and non-technical users needs.  Besides, it is definitely the best value for money, compared to competing technologies!

 

  • Download further information on the BTrap technology by cliking on that link.
  • For even more information, download the presentation made at the IMSC 2016 about PTR-FTICR-MS technology, available on that link.

 

 

Software

Different access levels softwares come with the BTrap instrument.

 

BTrap monitor software

 

The BTrap monitor software is an easy to use tool dedicated to control and monitor the elements of the instrument: pressure gauge, primary and turbomolecular pumps, valves…

 

                                                                                               

BTrap FT-ICR software

 

BTrap FT-ICR software is a powerful tool used for acquisition as data processing. Sequences which alternate analytical methods and/or measurement channels can be created in the software. That makes the software very efficient for continuous on site analysis. This tool permits also to make automatic quantification and live monitoring of the data obtained during an analysis.

Some functions can be tailor-made since FT-ICR is entirely written and maintained by our software development team.

 

 

 

 

 

Publications

  • Impact of fuel ethanol content on regulated and non-regulated emissions monitored by various analytical techniques over flex-fuel and conversion kit applications.

J-F.Fortune, P.Cologon, P.Hayrault, M.Heninger, J.Leprovost, J.Lemaire, P.Anselmi, M.Matrat. (2022)

Fuel, volume 334, Part 2 (15/02/2023), 126669

 

  • Insights into non-thermal plasma chemistry of acetone diluted in N2/02 mixtures: a real-time MS experiment.

S.Thomas, N.Blin-Simiand, M.Héninger, P.Jeannney, J.Lemaire, L.Magne, H.Mestdagh, S.Pasquiers, E.Louarn. (2022)

Physical Chemistry Chemical Physics, issue 34 (2022)

 

  • Ethanol fuel content impact on regulated and non-regulated emissions on EU6c and EU6d-Temp vehicles.

P.Anselmi, J-F.Fortune, P.Cologon, P.Hayrault, M.Heninger, J.Leprovost, J.Lemaire. (2021)

Ethanol fuel content impact on regulated and non-regulated emissions on EU6c and EU6d-Temp vehicles

 

  • Challenges and opportunities for on-line monitoring of chlorine-produced oxidants in seawater using portable membrane-introduction Fourier transform-ion cyclotron resonance mass spectrometry.

A.Roumiguières, S.Bouchonnet, S.Kinani. (2020)

Analytical and Bioanalytical Chemistry, 413, 885-900 (2021)

 

  • Direct and Real-Time Analysis in a Plasma Reactor Using a Compact FT-ICR MS: Degradation of Acetone in Nitrogen and Byproduct Formation.

S.Thomas, N.Blin-Simiand, M.Heninger, P.Jeanney, J.Lemaire, L.Magne, H.Mestdagh, S.Pasquiers, E.Louarn. (2020)

J. Am. Soc. Mass Spectrom., Juin 2020, 31, 1579-1586

 

  • Tracking Monochloramine Decomposition in MIMS Analysis.

A.Roumiguières, S.Kinani, S.Bouchonnet. (2019)

Sensors Décembre 2019, 20, 247

 

  • Evidence of reactivity in the membrane for the unstable monochloramine during MIMS analysis.

E.Louarn, A.Monem Asri-Idlibi, J.Leprovost, M.Heninger, H.Mestdagh. (2018)

Sensors Décembre 2018, 18, 4252

 

  • Real-time analysis of toluene removal in dry air by a dielectric barrier discharge using proton transfer reaction mass spectrometry.

S.Pasquiers, M. Heninger, N. Blin-Simiand, J. Lemaire, G. Bauville, B. Bournonville, E.Louarn, F. Jorand, H.Mestdagh. (2018)

J.phys. D:Appl.Phys. 51 (2018) 425201 (13pp)

 

  • Compact FTICR Mass Spectrometry for Real Time Monitoring of VOCs.

J.Lemaire, S.Thomas, A.Lopes, E.Louarn, H.Mestdagh, H.Latappy, J.Leprovost, M.Heninger. (2018)

Sensors mai 2018, 18, 1415

 

  • Gas analysis by Electron Impact ionization combined with Chemical Ionization in a compact FT-ICR mass spectrometer.

M.Heninger, H.Mestdagh, E.Louarn, G.Mauclaire, P.Boissel, J.Leprovost, E.Bauchard, S.Thomas, J.Lemaire. (2018)

Anal. Chem. 2018, 90, 7517–7525

 

  • Oxygen anion (O-) and hydroxide anion (HO-) reactivity with a series of old and new refrigerants.

C. Le Vot, J.Lemaire, P.Pernot, M.Heninger, H.Mestdagh, E.Louarn. (2018)

International Journal of Mass Spectrometry 53 (2018) 336-352

 

  • Development of a transportable FT-ICR MS associated with a glow discharge ionization source.

C. Le Vot, M.Bouaziz, M.Heninger, P.Boissel, H.Mestdagh, F.Da Costa, J.Lemaire. (2016)

International Journal of Mass Spectrometry 407 (2016) 106-112

 

  • Protonated 1,4-difluorobenze C6H5F2+: a promising precursor for proton-transfer chemical ionization.

Latappy, H., Lemaire, J., Heninger, M., Louarn, E., Bauchard, E., & Mestdagh, H. (2016).

International Journal of Mass Spectrometry 405 (2016) 13–23

 

  • Real time quantitative analysis of volatile products generated during solid-state polypropylene thermal oxydation.

Alexandre François Heude, Emmanuel Richaud, Julien Leprovost, Michel Heninger, Hélène Mestdagh, Eric Desnoux, Xavier Colin.

Polymer testing 32 (2013) 907-917

 

  • Characterization of a membrane inlet interfaced with a compact chemical ionization FT-ICR for real-time and quantitative VOC analysis in water

Essyllt Louarn, Anissa Hamrouni, Christophe Colbeau-Justin, Léa Bruschi, Joël Lemaire, Michel Heninger, Hélène Mestdagh.

Int. J. mass Spectrom, vol 353 (2013), 26-35

 

  • Chemical ionization using CF3+: Efficient detection of small alkanes and fluorocarbons

Christophe Dehon, Joël Lemaire, Michel Heninger, Aurélie Chaput, Hélène Mestdagh

International Journal of Mass Spectrometry 299 (2011) 113–119

 

  • Sur leurs traces

Essyllt Louarn, Aurélie Chaput, Michel Heninger, Joel Lemaire, Hélène Mestdagh

Plein sud recherche 2011, page 38

 

  • Detailed Characterization of 2-Heptanone Conversion by Dielectric Barrier Discharge in N2 and N2/O2 Mixtures

Alina Silvia Chiper, Nicole Blin-Simiand, Michel Heninger, Hélène Mestdagh, Pierre Boissel, François Jorand, Joël Lemaire, Julien Leprovost  Stéphane Pasquiers

Phys. Chem. A 2010, 114, 397–407

 

  • Mesure en temps réel de composés organiques volatils émis par la thermodégradation d’un matériau au moyen d’un couplage associant un analyseur thermogravimétrique avec un spectromètre de masse haute résolution (FT-ICR)

Michel HENINGER, Julien LEPROVOST, Xavier COLIN, Pierre LEPARLOUER, Christine MAYOUX, Nicolas BOUTON, Hélène MESTDAGH

Spectra Analyse n°274 (2010) p43

 

  • Analyse en temps réel de molécules à l’état de trace par ionisation chimique dans un spectromètre de masse haute résolution

Michel Heninger, Julien Leprovot, Laurent Courthaudon, Hélène Mestdagh, Joël Lemaire

Actualité chimique 2009, n°329, avril 2009, p19

 

  • Real Time Analysis of Volatile Organic Compounds from Polypropylene Thermal Oxidation Using Chemical Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

Salah Sarrabi,  Xavier Colin,  Abbas Tcharkhtchi,  Michel Heninger,  Julien Leprovost and Hélène Mestdagh

Anal. Chem. 2009, 81, 6013–6020

 

  • Quantitative analysis of a complex mixture using proton transfer reaction in an FTICR mass spectrometer

Christophe Dehon, Eugénie Gaüzère, Jérôme Vaussier, Michel Heninger, Alain Tchapla, Jean Bleton, Hélène Mestdagh

International Journal of Mass Spectrometry 272 (2008) 29–37

 

  • FTICR MS transportable

Heninger, L. Clochard, H. Mesdagh, G. Mauclaire, P. Boissel, J. Lemaire

Spectra Analyse Vol 35 n°248, mars 2006

 

  • Structural characterization of selectively prepared cationic iron complexes bearing monodentate and bidentate ether ligands using infrared photodissociation spectroscopy,

Le Caër, S., Heninger, M., Lemaire, J., Boissel, P., Maître, P. & Mestdagh, H.

Chem. Phys. Lett., 385, (2004) 273-279.

 

  • MICRA : A compact permanent magnet FTICR mass spectrometer

Mauclaire, J. Lemaire, P. Boissel, G. Bellec, M. Heninger

Eur. J. Mass Spectrom. 10 (2004) 155

 

  • Gas Phase IR photodissociation spectroscopy using an FTICR ion trap coupled to a free electron laser.

Lemaire, P. Boissel, M. Heninger, G. Mauclaire, G. Bellec, H. Mestdagh, A. Simon, S. Le Caer, J.M. Ortega, F. Glotin and P. Maitre

Physical Review Letters 89 (27) (2003) 2730021

 

  • First Ultrasensitive spectroscopy of ionic reactive intermediates in gas phase performed by coupling of an IR FEL with an FT-ICR.

Maître, S. Le Caër, A. Simon, J. Lemaire, H. Mestdagh, M. Heninger, G. Mauclaire, P. Boissel, JM. Ortega, R. Prazeres, F. Glotin

Nucl. Instrum. and Methods Phys. Res. 507 (2003) 541-546.

 

 

 

BTrap applications:

AUTOMOTIVEINDUSTRYMATERIALS TexteENVIRONMENTINDOOR AIR texte